Adaptive feature transformation for classification with sparse representation
نویسندگان
چکیده
منابع مشابه
Efficient Sparse Representation Classification Using Adaptive Clustering
This paper is presenting a method for an efficient face recognition algorithm based on sparse representation classification (SRC) using an adaptive K-means clustering. In the context of face recognition, SRC is implemented based on the assumption that a face image from a particular subject can be represented as a linear combination of other face images from the same subject. SRC uses a set of e...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملSparse Representation: Extract Adaptive Neighborhood for Multilabel Classification
Unlike traditional classification tasks, multilabel classification allows a sample to associate with more than one label. This generalization naturally arises the difficulty in classification. Similar to the single label classification task, neighborhood-based algorithms relying on the nearest neighbor have attracted lots of attention and some of them show positive results. In this paper, we pr...
متن کاملMultiscale Union Regions Adaptive Sparse Representation for Hyperspectral Image Classification
Sparse Representation has been widely applied to classification of hyperspectral images (HSIs). Besides spectral information, the spatial context in HSIs also plays an important role in the classification. The recently published Multiscale Adaptive Sparse Representation (MASR) classifier has shown good performance in exploiting spatial information for HSI classification. But the spatial informa...
متن کاملA Review on Multiple-feature-based Adaptive Sparse Representation (mfasr) and Other Classification Types
A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI’s) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Optik
سال: 2015
ISSN: 0030-4026
DOI: 10.1016/j.ijleo.2015.08.168